Roadmap to Master CatBoost
Roadmap to Master CatBoost
1. Basic Machine Learning Concepts
- Bias and Variance
- Basic Decision Tree: Classification, Regression, Feature Selection, Handling Missing Data
2. Data Encoding Techniques
- One-Hot Encoding
- Label Encoding
- Target Encoding
- K-Fold Target Encoding
3. Ensemble Methods
- Random Forest
- AdaBoost
- Gradient Boosting: Regression, Classification
4. Regularization Techniques
- L2 Regression (Ridge)
- Lasso (L1) Regression
- Elastic Net Regression
5. Advanced Boosting Algorithms
6. Model Evaluation Metrics
- Accuracy
- Precision
- Recall
- F1-Score
- ROC-AUC
7. Practical Applications
- Portfolio Construction
- Portfolio Management
- Risk Assessment
- Performance Optimization